Temporal Characteristics of Radiologists' and Novices' Lesion Detection in Viewing Medical Images Presented Rapidly and Sequentially
نویسندگان
چکیده
Although viewing multiple stacks of medical images presented on a display is a relatively new but useful medical task, little is known about this task. Particularly, it is unclear how radiologists search for lesions in this type of image reading. When viewing cluttered and dynamic displays, continuous motion itself does not capture attention. Thus, it is effective for the target detection that observers' attention is captured by the onset signal of a suddenly appearing target among the continuously moving distractors (i.e., a passive viewing strategy). This can be applied to stack viewing tasks, because lesions often show up as transient signals in medical images which are sequentially presented simulating a dynamic and smoothly transforming image progression of organs. However, it is unclear whether observers can detect a target when the target appears at the beginning of a sequential presentation where the global apparent motion onset signal (i.e., signal of the initiation of the apparent motion by sequential presentation) occurs. We investigated the ability of radiologists to detect lesions during such tasks by comparing the performances of radiologists and novices. Results show that overall performance of radiologists is better than novices. Furthermore, the temporal locations of lesions in CT image sequences, i.e., when a lesion appears in an image sequence, does not affect the performance of radiologists, whereas it does affect the performance of novices. Results indicate that novices have greater difficulty in detecting a lesion appearing early than late in the image sequence. We suggest that radiologists have other mechanisms to detect lesions in medical images with little attention which novices do not have. This ability is critically important when viewing rapid sequential presentations of multiple CT images, such as stack viewing tasks.
منابع مشابه
A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملVisual Search of Experts in Medical Image Reading: The Effect of Training, Target Prevalence, and Expert Knowledge
The aims of this study are (a) To determine the effect of training on the multiple-target lesion search performance; and (b) To examine the effect of target prevalence on the performance of radiologists and novices. We conducted four sessions of 500 trials in a lesion search on a medical image task in which participants searched for three different target lesions. Participants were 10 radiologi...
متن کاملInfluence of the Different Primary Cancers and Different Types of Bone Metastasis on the Lesion-based Artificial Neural Network Value Calculated by a Computer-aided Diagnostic System,BONENAVI, on Bone Scintigraphy Images
Objective(s): BONENAVI, a computer-aided diagnostic system, is used in bone scintigraphy. This system provides the artificial neural network (ANN) and bone scan index (BSI) values. ANN is associated with the possibility of bone metastasis, while BSI is related to the amount of bone metastasis. The degree of uptake on bone scintigraphy can be affected by the type of bone metastasis. Therefore, t...
متن کاملA half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breast.
Humans are very adept at extracting the "gist" of a scene in a fraction of a second. We have found that radiologists can discriminate normal from abnormal mammograms at above-chance levels after a half-second viewing (d' ∼ 1) but are at chance in localizing the abnormality. This pattern of results suggests that they are detecting a global signal of abnormality. What are the stimulus properties ...
متن کاملA Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016